635 research outputs found

    Who is the Inflaton?

    Get PDF
    In the context of the two-fluid model introduced to tame the transplanckian problem of black hole physics, the inflaton field of the chaotic inflation scenario is identified with the fluctuation of the density of modes. Its mass comes about from the exchange of degrees of freedom between the two fluids.Comment: extensively revised version presented at the Corfu School and Workshop of Theoretical Physics 200

    The Inflaton and Time in the Matter-Gravity System

    Get PDF
    The emergence of time in the matter-gravity system is addressed within the context of the inflationary paradigm. A quantum minisuperspace-homogeneous minimally coupled inflaton system is studied with suitable initial conditions leading to inflation and the system is approximately solved in the limit for large scale factor. Subsequently normal matter (either non homogeneous inflaton modes or lighter matter) is introduced as a perturbation and it is seen that its presence requires the coarse averaging of a gravitational wave function (which oscillates at trans-Planckian frequencies) having suitable initial conditions. Such a wave function, which is common for all types of normal matter, is associated with a ``time density'' in the sense that its modulus is related to the amount of time spent in a given interval (or the rate of flow of time). One is then finally led to an effective evolution equation (Schroedinger Schwinger-Tomonaga) for ``normal'' matter. An analogy with the emergence of a temperature in statistical mechanics is also pointed out.Comment: 14 pages, late

    Time dependent Green functions from Wheeler De Witt solutions

    Full text link
    The aim of this article is twofold. First we examine from a new angle the question of recovery of time in quantum cosmology. We construct Green functions for matter fields from the solutions of the Wheeler De Witt equation. For simplicity we work in a mini-superspace context. By evaluating these Green functions in a first order development of the energy ``increment'' induced by matrix elements of field operators, we show that the background geometry is the solution of Einstein equations driven by the mean matter energy and that it is this background which determines the time lapses separating the field operators. Then, by studying higher order corrections, we clarify the nature of the small dimensionless parameters which guarantee the validity of the approximations used. In this respect, we show that the formal expansion in the inverse Planck mass which is sometime presented as the ``standard procedure'' is illegitimate. Secondly, by the present analysis of Green functions, we prepare the study of quantum matter transitions in quantum cosmology. In a next article, we show that the time parametrization of transition amplitudes appears for the same reasons that it appeared in this article. This proves that the background is dynamically determined by the transition under examination.Comment: 25 pages, latex, no figure

    Entanglement and Thermodynamics of Black Hole Entropy

    Full text link
    Using simple conditions drawn from the stability of the cosmos in terms of vacuum energy density, the cut-off momentum of entanglement is related to the planckian mass. In so doing the black hole entropy is shown to be independent of the number of field species that contribute to vacuum fluctuations. And this is in spite of the fact that the number of field species is a linear multiplicand of the entanglement entropy when this latter is expressed in terms of the fundamental momentum cut-off of all fields.Comment: 5 page

    Black hole and the adiabatic phase

    Get PDF
    An open system consisting of a scalar field bound to a Kerr black hole whose mass (MM) and specific angular momentum (aa) are slowly (adiabatically) perturbed is considered. The adiabatically induced phase and the conditions for the validity of the adiabatic approximation are obtained. The effect of closed cycles in parameter space (aa, MM plane) on the energy levels of both stable and unstable scalar field bound states, together with other quantities of interest, is illustrated. Lastly it is noted that the black hole wavefunction will acquire an equal and opposite phase to that of matter thus leading to a change of its effective action (entropy).Comment: Plain TeX, 12 page

    The Born-Oppenheimer Approach to the Matter-Gravity System and Unitarity

    Get PDF
    The Born-Oppenheimer approach to the matter-gravity system is illustrated and the unitary evolution for matter, in the absence of phenomena such as tunnelling or other instabilities, verified. The Born-Oppenheimer approach to the matter-gravity system is illustrated in a simple minisuperspace model and the corrections to quantum field theory on a semiclassical background exhibited. Within such a context the unitary evolution for matter, in the absence of phenomena such as tunnelling or other instabilities, is verified and compared with the results of other approaches. Lastly the simplifications associated with the use of adiabatic invariants to obtain the solution of the explicitly time dependent evolution equation for matter are evidenced.Comment: Latex, 12 pages. Revised version as accepted for publication by Class. and Quant. Grav. Some points explained and misprints correcte

    Semiclassical collapse of a sphere of dust

    Get PDF
    The semiclassical collapse of a homogeneous sphere of dust is studied. After identifying the independent dynamical variables, the system is canonically quantised and coupled equations describing matter (dust) and gravitation are obtained. The conditions for the validity of the adiabatic (Born--Oppenheimer) and semiclassical approximations are derived. Further on neglecting back--reaction effects, it is shown that in the vicinity of the horizon and inside the dust the Wightman function for a conformal scalar field coupled to a monopole emitter is thermal at the characteristic Hawking temperature.Comment: LaTeX, 25 pages, no figures, final version accepted for publication in Class. and Quantum Gra

    Hawking Radiation from Feynman Diagrams

    Get PDF
    The aim of this letter is to clarify the relationships between Hawking radiation and the scattering of light by matter falling into a black hole. To this end we analyze the S-matrix elements of a model composed of a massive infalling particle (described by a quantized field) and the radiation field. These fields are coupled by current-current interactions and propagate in the Schwarzschild geometry. As long as the photons energy is much smaller than the mass of the infalling particle, one recovers Hawking radiation since our S-matrix elements identically reproduce the Bogoliubov coefficients obtained by treating the trajectory of the infalling particle classically. But after a brief period, the energy of the `partners' of Hawking photons reaches this mass and the production of thermal photons through these interactions stops. The implications of this result are discussed.Comment: 12 pages, revtex, no figure
    • …
    corecore